Motivic $C\tau$ Modules

Wang Guozhen

Shanghai Center for Mathematical Sciences

2018-06

Homotopy theory for smooth schemes

Motivic homotopy theory is a homotopy theory for smooth schemes.

homotopy category of spaces	motivic homotopy category
smooth manifolds	smooth schemes
real line	affine line
topological spaces	simplicial sheaves over smooth schemes
homotopy invariance	\mathbb{A}^1 -invariance
S^1	$S^{1,0}$, \mathbb{G}_m
stable homotopy category	stable motivic homotopy category

Motivic homotopy category

Let S be a Noetherian scheme, Sm/S be the category of smooth schemes of finite type over S.

Definition

The motivic homotopy category Mot(S) is the homotopy localization of the ∞ -topos of ∞ -sheaves on the Nisnevich site of Sm/S with respect to the interval object \mathbb{A}^1 .

Definition

The stable motivic homotopy category SMot(S) is the stable ∞ -category obtained from Mot(S) by stabliztion with respect to $S^{1,1} = \mathbb{P}^1$.

Motivic Eilenberg-Mac Lane spaces

Let k be a field of characteristic 0. We can define the motivic Eilenberg-Mac Lane spaces over k as in the case for ordinary topological spaces:

The motivic Eilenberg-Mac Lane space $K(\mathbb{Z}(n),2n)\in Mot(k)$ is the free abelien group object generated by the pointed motivic space $\mathbb{P}(k)^{\wedge n}$.

The motivic Eilenberg-Mac Lane spaces together form the motivic Eilenberg-Mac Lane spectrum $H^{mot}\mathbb{Z}$ which represents motivic homology.

Similarly we can define motivic Eilenberg-Mac Lane spectra with other coeficients such as $H^{mot}\mathbb{F}_p$.

Coeficient ring of motivic homology

The coeficient ring of motivic cohomology computed by Voevodsky in terms of Milnor K-theory.

In particular, over the field of complex numbers, we have:

Over the base field \mathbb{C} , the coeficient ring of mod p motivic homology is

$$H^{mot}\mathbb{F}_{p_{*,*}}=\mathbb{F}_p[\tau]$$

We will be working over $\mathbb C$ from now on.

The Betti realization functor

For a smooth scheme over \mathbb{C} , there is a canonical way to associate a complex manifold to it.

By the universal property of the motivic homotopy category, we get the Betti realization functor

$$re: Mot(\mathbb{C}) o Top$$

which preserves homotopy colimits.

Moreover, the Betti realization functor stabilize to give the stable Betti realization functor

$$re: SMot(\mathbb{C}) o Spectra$$

Comparison with classical homology

Denote by H^{mot} to be $H^{mot}\mathbb{F}_p$ and H for the classical mod p Eilenberg-Mac Lane spectrum $H\mathbb{F}_p$.

The Betti realization of H^{mot} is H. Moreover, there is a comparison map from the motivic homology to the classical homology of Betti realization.

For any motivic spectrum X, there is a natural map

$$H_{*,*}^{mot}(X)[\tau^{-1}] \to H_*(re(X)) \otimes \mathbb{F}_p[\tau^{\pm 1}]$$

which is an isomorphism if X is the sphere spectrum or more generally a cellular spectrum.

Motivic dual Steenrod algebra

The motivic dual Steenrod algebra, i.e. motivic homology of the motivic Eilenberg-Mac Lane spectrum, is computed by Voevodsky.

At the prime p = 2, we have:

$$H_{*,*}^{mot}H^{mot}=H_{*,*}^{mot}[\tau_0,\tau_1,\ldots,\xi_1,\xi_2,\ldots]/(\tau_k^2=\tau\xi_{k+1})$$

The coaction is as follows:

$$\psi(\tau_k) = \tau_k \otimes 1 + \sum_{i=0}^k \xi_{k-i}^{2^i} \otimes \tau_i$$
$$\psi(\xi_k) = \sum_{i=0}^k \xi_{k-i}^{2^i} \otimes \xi_i$$

Motivic Adams spectral sequence

We can construct the Adams resolution using any motivic ring spetrum.

For motivic homology, we get the motivic Adams spectral sequence:

$$Ext_{H_{*,*}^{mot}H^{mot}}(H_{*,*}^{mot},H_{*,*}^{mot}(X))\Rightarrow\pi_{*,*}(X_{H^{mot}}^{\wedge})$$

converging conditionally for any motivic spectrum X.

Recall we are working over \mathbb{C} . In this case $\tau \in H_{0,-1}^{mot}$ is primitive.

Hence the motivic Adams spectral sequence shows the existence of an element

$$au \in \pi_{0,-1}(S^{mot})^{\wedge}_{H^{mot}}$$

Relation between classical and motivic ASS

We have a morphism of Hopf algebras

$$(H_{*,*}^{mot}, H_{*,*}^{mot}H^{mot}) \rightarrow (H_*, H_*H)$$

by sending τ to 1, and sending τ_i to ζ_{i+1} .

We call an object $X \in SMot$ cellular if it is a colimit of motivic spheres.

(Dugger-Isaksen)

Let $X \in SMot(\mathbb{C})$ be cellular. Then after inverting τ , the motivic Adams spectral sequence for X is isomorphic to the classical Adams spectral sequence for re(X) tensored with $\mathbb{F}_p[\tau^{\pm}]$.

Motivic ASS as a deformation

Let C au be the cofiber of the map $au:S^{0,-1} o S^{0,0}$

$C\tau$ generates the fiber of Betti realization

We also have the following functors of stable infinity categories:

The first row is an exact sequence of stable infinity categories.

Motivic ASS for $C\tau$ and ANSS

The same data!

E_2 term of motivic ASS for $C\tau$

$C\tau$ -modules

The category of $C\tau$ -modules can be studies with purely algebraic methods:

(Gheorghe-Wang-Xu)

There is an equivalence of stable infinity categories between the category of cellular $C\tau$ -modules and the (unbounded) derived category of BP_*BP -comodules.

In particular, we can construct the Adams resolution of $C\tau$ using the algebraic Novikov filtration in BP_*BP -comodules, and get an isomorphism of spectral sequences:

(Gheorghe-Wang-Xu)

The algebraic Adams-Novikov spectral sequence is isomorphic to the motivic Adams spectral sequence for $C\tau$. Moreover, this isomorphism preserves all multiplicative structures, including Massey products.

Strategy of proof

- Construct MU^{mot}/τ modules realizing injective MU_*MU -comodules using projective resolutions of MU_* modules.
- **②** Establish the general Adams-Novikov spectral sequence in $C\tau$ -modules using injective resolutions of MU_*MU comodules.
- **3** Construct all mod τ Smith-Toda complexes.
- Construct $C\tau$ modules realizing all BP_*BP comodules using the Landweber filtration theorem.
- Stablish the t-structure by induction on the Chow filtration.
- Show the equivalence on the bounded derived category using Lurie's criterion.
- Extend the equivalence using a filtered colimit argument.

Motivic $C\tau$ method

Motivic $C\tau$ method

Algebraic Novikov d_r differentials (for any r)

 \longleftrightarrow Motivic Adams d_r differentials for $C\tau$

 \longrightarrow Motivic Adams $d_{r'}$ differentials for $S^{0,0}$ (for $r' \le r$)

 \longrightarrow Classical Adams $d_{r'}$ differentials for S^0 (for $r' \le r$)

E_{∞} -term of motivic Adams spectral sequence

Further questions

A natural question is: Does there exist an analogous theory over other fields? Over a base field k. We can also construct a stable motivic category $SMot^{\text{\'et}}(k)$ using the étale topology instead of the Nisnevich topology.

There is a natural functor

$$SMot(k) \rightarrow SMot^{\text{\'et}}(k)$$

Question

Is there a subcategory C of SMot(k), whose objects generate the kernel of the above functor, such that there exists a t-structure on C and C is equivalent to the derived category on its heart.